Rabu, 11 Juni 2014

Gelombang Elektromagnetik

Gelombang Elektromagnetik

Gelombang Elektromagnetik adalah gelombang yang dapat merambat  walau tidak ada medium. Energi elektromagnetik merambat dalam gelombang dengan beberapa karakter yang bisa diukur, yaitu: panjang gelombang/wavelength, frekuensi, amplitude/amplitude, kecepatan. Amplitudo adalah tinggi gelombang, sedangkan panjang gelombang adalah jarak antara dua puncak. Frekuensi adalah jumlah gelombang yang melalui suatu titik dalam satu satuan waktu. Frekuensi tergantung dari kecepatan merambatnya gelombang. Karena kecepatan energi elektromagnetik adalah konstan (kecepatan cahaya), panjang gelombang dan frekuensi berbanding terbalik. Semakin panjang suatu gelombang, semakin rendah frekuensinya, dan semakin pendek suatu gelombang semakin tinggi frekuensinya.
Energi elektromagnetik dipancarkan, atau dilepaskan, oleh semua masa di alam semesta pada level yang berbedabeda. Semakin tinggi level energi dalam suatu sumber energi, semakin rendah panjang gelombang dari energi yang dihasilkan, dan semakin tinggi frekuensinya. Perbedaan karakteristik energi gelombang digunakan untuk mengelompokkan energi elektromagnetik.
Ciri-ciri gelombang elektromagnetik :
Dari uraian tersebut diatas dapat disimpulkan beberapa ciri gelombang elektromagnetik adalah sebagai berikut:
1.      Perubahan medan listrik dan medan magnetik terjadi pada saat yang bersamaan, sehingga kedua medan memiliki harga maksimum dan minimum pada saat yang sama dan pada tempat yang sama.
2.      Arah medan listrik dan medan magnetik saling tegak lurus dan keduanya tegak lurus terhadap arah rambat gelombang.
3.      Dari ciri no 2 diperoleh bahwa gelombang elektromagnetik merupakan gelombang transversal.
4.      Seperti halnya gelombang pada umumnya, gelombang elektromagnetik mengalami peristiwa pemantulan, pembiasan, interferensi, dan difraksi. Juga mengalami peristiwa polarisasi karena termasuk gelombang transversal.
5.      Cepat rambat gelombang elektromagnetik hanya bergantung pada sifat-sifat listrik dan magnetik medium yang ditempuhnya.
Cahaya yang tampak oleh mata bukan semata jenis yang memungkinkan radiasi elektromagnetik. Pendapat James Clerk Maxwell menunjukkan bahwa gelombang elektromagnetik lain, berbeda dengan cahaya yang tampak oleh mata dalam dia punya panjang gelombang dan frekuensi, bisa saja ada. Kesimpulan teoritis ini secara mengagumkan diperkuat oleh Heinrich Hertz, yang sanggup menghasilkan dan menemui kedua gelombang yang tampak oleh mata yang diramalkan oleh Maxwell itu. Beberapa tahun kemudian Guglielmo Marconi memperagakan bahwa gelombang yang tak terlihat mata itu dapat digunakan buat komunikasi tanpa kawat sehingga menjelmalah apa yang namanya radio itu. Kini, kita gunakan juga buat televisi, sinar X, sinar gamma, sinar infra, sinar ultraviolet adalah contoh-contoh dari radiasi elektromagnetik. Semuanya bisa dipelajari lewat hasil pemikiran Maxwell.


 SUMBER GELOMBANG ELEKTROMAGNETIK
  1. Osilasi listrik.
  2. Sinar matahari menghasilkan sinar infra merah.
  3. Lampu merkuri menghasilkan ultra violet.
  4. Penembakan elektron dalam tabung hampa pada keping logam menghasilkan sinar X (digunakan untuk rontgen).
Inti atom yang tidak stabil  menghasilkan sinar gamma.

SPEKTRUM GELOMBANG ELEKTROMAGNETIK
Susunan semua bentuk gelombang elektromagnetik berdasarkan panjang gelombang dan frekuensinya disebut spektrum elektromagnetik. Gambar spectrum elektromagnetik di bawah disusun berdasarkan panjang gelombang (diukur dalam satuan _m) mencakup kisaran energi yang sangat rendah, dengan panjang gelombang tinggi dan frekuensi rendah, seperti gelombang radio sampai ke energi yang sangat tinggi, dengan panjang gelombang rendah dan frekuensi tinggi seperti radiasi X-ray dan Gamma Ray.

Contoh spektrum elektromagnetik

Gelombang Radio
Gelombang radio dikelompokkan menurut panjang gelombang atau frekuensinya. Jika panjang gelombang tinggi, maka pasti frekuensinya rendah atau sebaliknya. Frekuensi gelombang radio mulai dari 30 kHz ke atas dan dikelompokkan berdasarkan lebar frekuensinya. Gelombang radio dihasilkan oleh muatan-muatan listrik yang dipercepat melalui kawat-kawat penghantar. Muatan-muatan ini dibangkitkan oleh rangkaian elektronika yang disebut osilator. Gelombang radio ini dipancarkan dari antena dan diterima oleh antena pula. Kamu tidak dapat mendengar radio secara langsung, tetapi penerima radio akan mengubah terlebih dahulu energi gelombang menjadi energi bunyi.
  
Gelombang mikro
Gelombang mikro (mikrowaves) adalah gelombang radio dengan frekuensi paling tinggi yaitu diatas 3 GHz. Jika gelombang mikro diserap oleh sebuah benda, maka akan muncul efek pemanasan pada benda itu. Jika makanan menyerap radiasi gelombang mikro, maka makanan menjadi panas dalam selang waktu yang sangat singkat. Proses inilah yang dimanfaatkan dalam microwave oven untuk memasak makanan dengan cepat dan ekonomis.
Gelombang mikro juga dimanfaatkan pada pesawat RADAR (Radio Detection and Ranging) RADAR berarti mencari dan menentukan jejak sebuah benda dengan menggunakan gelombang mikro. Pesawat radar memanfaatkan sifat pemantulan gelombang mikro. Karena cepat rambat glombang elektromagnetik c = 3 X 108 m/s, maka dengan mengamati selang waktu antara pemancaran dengan penerimaan.
 
Sinar Inframerah
Sinar inframerah meliputi daerah frekuensi 1011Hz sampai 1014 Hz atau daerah panjang gelombang 10-4 cm sampai 10-1 cm. jika kamu memeriksa spektrum yang dihasilkan oleh sebuah lampu pijar dengan detektor yang dihubungkan pada miliampermeter, maka jarum ampermeter sedikit diatas ujung spektrum merah. Sinar yang tidak dilihat tetapi dapat dideteksi di atas spektrum merah itu disebut radiasi inframerah.
Sinar infamerah dihasilkan oleh elektron dalam molekul-molekul yang bergetar karena benda diipanaskan. Jadi setiap benda panas pasti memancarkan sinar inframerah. Jumlah sinar inframerah yang dipancarkan bergantung pada suhu dan warna benda. 

Cahaya tampak
Cahaya tampak sebagai radiasi elektromagnetik yang paling dikenal oleh kita dapat didefinisikan sebagai bagian dari spektrum gelombang elektromagnetik yang dapat dideteksi oleh mata manusia. Panjang gelombang tampak nervariasi tergantung warnanya mulai dari panjang gelombang kira-kira 4 x 10-7 m untuk cahaya violet (ungu) sampai 7x 10-7 m untuk cahaya merah. Kegunaan cahaya salah satunya adlah penggunaan laser dalam serat optik pada bidang telekomunikasi dan kedokteran.

Sinar ultraviolet 
Sinar ultraviolet mempunyai frekuensi dalam daerah 1015 Hz sampai 1016 Hz atau dalam daerah panjang gelombagn 10-8 m 10-7 m. gelombang ini dihasilkan oleh atom dan molekul dalam nyala listrik. Matahari adalah sumber utama yang memancarkan sinar ultraviolet dipermukaan bumi,lapisan ozon yang ada dalam lapisan atas atmosferlah yang berfungsi menyerap sinar ultraviolet dan meneruskan sinar ultraviolet yang tidak membahayakan kehidupan makluk hidup di bumi.

Sinar X 
Sinar X mempunyai frekuensi antara 10 Hz sampai 10 Hz . panjang gelombangnya sangat pendek yaitu 10 cm sampai 10 cm. meskipun seperti itu tapi sinar X mempunyai daya tembus kuat, dapat menembus buku tebal, kayu tebal beberapa sentimeter dan pelat aluminium setebal 1 cm.    
 
Sinar Gamma
Sinar gamma mempunyai frekuensi antara 10 Hz sampai 10 Hz atau panjang gelombang antara 10 cm sampai 10 cm. Daya tembus paling besar, yang menyebabkan efek yang serius jika diserap oleh jaringan tubuh. 

Contoh penerapan gelombang elektromagnetik dalam kehidupan sehari-hari  
    1. Radio
Radio energi adalah bentuk level energi elektromagnetik terendah, dengan kisaran panjang gelombang dari ribuan kilometer sampai kurang dari satu meter. Penggunaan paling banyak adalah komunikasi, untuk meneliti luar angkasa dan sistem radar. Radar berguna untuk mempelajari pola cuaca, badai, membuat peta 3D permukaan bumi, mengukur curah hujan, pergerakan es di daerah kutub dan memonitor lingkungan. Panjang gelombang radar berkisar antara 0.8 – 100 cm.
  1.  
    1. Microwave
Panjang gelombang radiasi microwave berkisar antara 0.3 – 300 cm. Penggunaannya terutama dalam bidang komunikasi dan pengiriman informasi melalui ruang terbuka, memasak, dan sistem PJ aktif. Pada sistem PJ aktif, pulsa microwave ditembakkan kepada sebuah target dan refleksinya diukur untuk mempelajari karakteristik target. Sebagai contoh aplikasi adalah Tropical Rainfall Measuring Mission’s (TRMM) Microwave Imager (TMI), yang mengukur radiasi microwave yang dipancarkan dari Spektrum elektromagnetik Energi elektromagnetik atmosfer bumi untuk mengukur penguapan, kandungan air di awan dan intensitas hujan.
  1.  
    1. Infrared
Kondisi-kondisi kesehatan dapat didiagnosis dengan menyelidiki pancaran inframerah dari tubuh. Foto inframerah khusus disebut termogram digunakan untuk mendeteksi masalah sirkulasi darah, radang sendi dan kanker. Radiasi inframerah dapat juga digunakan dalam alarm pencuri. Seorang pencuri tanpa sepengetahuannya akan menghalangi sinar dan menyembunyikan alarm. Remote control berkomunikasi dengan TV melalui radiasi sinar inframerah yang dihasilkan oleh LED ( Light Emiting Diode ) yang terdapat dalam unit, sehingga kita dapat menyalakan TV dari jarak jauh dengan menggunakan remote control.

d.      Ultraviolet

Sinar UV diperlukan dalam asimilasi tumbuhan dan dapat membunuh kuman-kuman penyakit kulit.

e.      Sinar X

Sinar X ini biasa digunakan dalam bidang kedokteran untuk memotret kedudukan tulang dalam badan terutama untuk menentukan tulang yang patah. Akan tetapi penggunaan sinar X harus hati-hati sebab jaringan sel-sel manusia dapat rusak akibat penggunaan sinar X yang terlalu lama.

Materi Gelap di Matahari?

Spektroskopi neutrino bisa memeriksa keberadaan materi gelap di Matahari

Materi Gelap di Matahari?

Bukti tentang adanya materi gelap berasal dari obyek-obyek besar, mulai dari yang berkaliber galaksi sampai ke struktur alam semesta itu sendiri. Namun sebuah naskah yang dipublikasikan di Science mengindikasikan bahwa kita bisa melihat pada sesuatu yang lebih kecil dan lebih dekat yaitu Matahari, jika kita mau mulai mencari tahu seperti apa gambaran materi gelap itu. Karena materi gelap berinteraksi melalui gravitasi, Matahari memiliki konsentrasi gravitasi terbesar di sekitar kita, dan naskah tersebut mengargumentasikan bahwa materi tambahan seharusnya mempengaruhi produksi neutrino dengan cara yang bisa dideteksi.

Naskah itu merupakan suatu Brevia (laporan pendek) dan teksnya bahkan tak sampai satu halaman penuh, tapi naskah tersebut mengintisarikan banyak informasi ke dalam halaman pendek itu. Pengarangya menunjukkan bahwa gravitasi Matahari akan menangkap materi gelap ketika bergerak melalui Bima Sakti dan dengan adanya partikel-partikel materi gelap ini di Matahari, setidaknya menimbulkan tabrakan-tabrakan lemah dan jarang dengan materi biasa. Partikel-partikel itu akhirnya akan terakumulasi di inti Matahari yang kemudian akan mempengaruhi reaksi fusi yang terjadi.

Menurut pemetaan Matahari saat ini, reaksi-reaksi berbeda terjadi pada kedalaman berbeda, dan hal ini akan bermuara pada distribusi neutrino yang tak sama yang dihasilkan oleh reaksi-reaksi ini. Materi gelap akan mengubah lokasi-lokasi reaksi ini dan menyebabkan perbedaan yang bisa dideteksi pada aliran neutrino yang keluar dari Matahari. Saat ini kita belum memiliki perangkat keras untuk mendeteksi perbedaan-perbedaan ini, tapi para peneliti mengatakan bahwa mereka akan segera memiliki observatorium neutrino.

Perlu diperhatikan bahwa pemetaan materi gelap surya yang mereka gunakan mengandung beberapa asumsi di luar interaksi dengan materi biasa, seperti massa partikel-partikel itu sendiri dan kemampuannya untuk saling menghilangkan satu sama lain dalam tabrakan. Namun para peneliti menunjukkan betapa berubahnya asumsi-asumsi ini bisa menghasilkan hasil yang signifikan berbeda. Hal in berarti bawa walaupun eksperimen yang akan dilakukan tidak menyediakan bukti yang meyakinkan tentang materi gelap, setidaknya mereka bisa mengemukakan beberapa pemetaan seperti apa sebenarnya partikel-partikel materi gelap itu.

Cahaya Bisa Menghasilkan Daya Angka

Para ilmuwan menciptakan foil cahaya yang dapat mendorong obyek-obyek kecil ke samping.

Cahaya Bisa Menghasilkan Daya Angkat

Cahaya difungsikan untuk menghasilkan tenaga yang sama yang membuat pesawat udara terbang, seperti yang ditunjukkan oleh studi baru.
Dengan desain yang tepat, aliran seragam cahaya mendorong obyek-obyek yang sangat kecil seperti halnya sayap pesawat terbang menaikkan tubuh pesawat ke udara.

Para peneliti telah lama mengetahui bahwa memukul sebuah obyek dengan cahaya dapat mendorong obyek tersebut. Itulah pemikiran di balik layar surya, yang memanfaatkan radiasi untuk tenaga pendorong di luar angkasa. "Kemampuan cahaya untuk mendorong sesuatu sudah diketahui," tutur rekan peneliti Grover Swartzlander dari Institut Teknologi Rochester di New York, seperti yang dikutip Science News (05/12/10).

Trik baru cahaya lebih menarik dari sebuah dorongan biasa: Hal itu menciptakan tenaga yang lebih rumit yang disebut daya angkat, bukti ketika sebuah aliran pada satu arah menggerakkan sebuah obyek secara tegak lurus. Foil udara atau airfoil menghasilkan daya angkat; ketika mesin memutar baling-baling dan menggerakkan pesawat ke depan, sayap-sayapnya yang dimiringkan menyebabkan pesawat itu naik.

Foil cahaya tidak dimaksudkan untuk menjaga sebuah pesawat tetap berada di udara selama penerbangan dari satu bandara ke bandara lainnya. Namun kesatuan alat-alat yang sangat kecil tersebut boleh digunakan untuk mendayakan mesin-mesin mikro, mentransportasikan partikel-partikel yang sangat kecil atau bahkan membolehkan metode-metode sistem kemudi pada layar surya.

Daya angkat optik merupakan "ide yang sangat rapi", kata fisikawan Miles Padgett dari Universitas Glasgow di Skotlandia, namun terlau dini untuk mengatakan bagaimana efek tersebut boleh dimanfaatkan. "Mungkin berguna, mungkin tidak. Waktu yang akan membuktikan."

Cahaya tersebut dapat memiliki daya angkat yang tak terduga ini dimulai dari sebuah pertanyaan yang sangat sederhana, Swartzlander mengatakan, "Jika kita mempunyai sesuatu berbentuk sayap dan kita menyinarinya dengan cahaya, apa yang terjadi?" Eksperimen-eksperimen pemodelan menunjukkan kepada para peneliti bahwa sebuah defleksi asimetris cahaya akan menciptakan sebuah daya angkat yang sangat stabil. "Jadi kami pikir lebih baik melakukan satu eksperimen," kata Swartzlander

Para peneliti membuat batangan-batangan sangat kecil berbentuk mirip sayap pesawat terbang, di satu sisi pipih dan di sisi lainnya berliku. Ketika foil-foil udara berukuran mikron ini dibenamkan ke dalam air dan dipukul dengan 130 miliwatt cahaya dari dasar wadah, foil-foil tersebut mulai bergerak ke atas, seperti yang diduga. Namun batangan-batangan tersebut juga mulai bergerak ke samping, arah tegak lurus terhadap cahaya yang datang. Bola-bola simetris sangat kecil tidak menunjukkan efek daya angkat ini, seperti yang ditemukan tim tersebut.

Daya angkat optik berbeda dari daya angkat aerodinamis dengan sebuah foil udara. Sebuah pesawat udara terbang karena udara yang mengalir lebih lambat di bawah sayap-sayapnya menggunakan tekanan lebih besar daripada udara yang mengalir lebih cepat di atas. Namun pada foil cahaya,daya angkat diciptakan di dalam obyek-obyek tersebut ketika sorotan sinar melaluinya. Bentuk foil udara transparan terebut menyebabkan cahaya dibiaskan berbeda-beda tergantung pada tempat cahaya itu lewat, yang menyebabkan pembengkokan sesui momentum sorotan yang menghasilkan daya angkat.

Sudut-sudut daya angkat foil-foil cahaya ini sekitar 60 derajat, menurut temuan tim tersebut. "Kebanyakan benda-benda aerodinamis mengudara pada sudut-sudut yang sangat gradual, akan tetapi hal ini memiliki sudut daya angkat yang luar biasa dan sangat kuat," ujar Swartzlander. "Anda bisa bayangkan apa yang akan terjadi jika pesawat anda mengudara pada 60 derajat -- perut anda akan berada di kaki."

Ketika batangan-batangan itu terangkat, seharusnya tidak jatuh atau kehilangan daya angkat, seperti yang diprediksi. "Sebenarnya benda tersebut bisa menstabilkan diri sendiri," kata Padgett.

Swartzlander mengatakan bahwa dia berharap pada akhirnya bisa menguji foil-foil cahaya tersebut di udara juga, dan mencoba berbagai bentuk serta material dengan berbagai sifat pembiasan. Dalam studi tersebut para penelit menggunakan cahaya infra merah untuk menghasilkan daya angkat tersebut, tapi jenis cahaya lainnya juga bisa, kata Swartzlander. "Yang indah tentang hal ini ialah bahwa benda itu akan berfungsi selama anda memiliki cahaya."

Partikel Baru Temuan Eksperimen Fisik

Eksperimen fisika menunjukkan keberadaan partikel baru.

Partikel Baru Temuan Eksperimen Fisika

Hasil prestisius eksperimen fisika Fermilab yang melibatkan seorang profesor Universitas Michigan nampaknya mengkonfirmasi penemuan aneh 20 tahun yang memberi petunjuk keberadaan sebuah partikel dasar baru yaitu aspek ke empat neutrino.
Hasil baru tersebut lebih jauh menjelaskan suatu pelanggaran simetri fundamental alam semesta yang menyatakan bahwa partikel-partikel antimateri berkelakuan dengan cara yang sama seperti materi-materi penyeimbangnya. Demikian seperti yang dilansir oleh Physorg pada tanggal 2 November 2010.

Neutrino adalah partikel dasar netral yang dihasilkan dalam penguraian radioaktif partikel lain. "Aspek" yang diketahui dari neutrino merupakan penyeimbang netral elektron dan kerabat-kerabatnya yang lebih berat yaitu muon dan tau. Tanpa memperhitungkan aspek asal neutrino, partikel-partikel tersebut secara konstan berubah dari satu tipe ke tipe lainnya dalam sebuah fenomena yang disebut "osilasi aspek neutrino".

Sebuah neutrino elektron bisa saja menjadi neutrino muon, kemudian menjadi neutrino elektron lagi. Sebelumnya para ilmuwan meyakini keberadaan tiga aspek neutrino. Dalam Eksperimen Mini Booster Neutrino yang dijuluki MiniBooNE, para peneliti mendeteksi lebih banyak osilasi yang hanya mungkin terjadi jika ada lebih dari tiga aspek.

"Hasil ini mengimplikasikan bahwa ada partikel baru atau kekuatan yang belum kami bayangkan sebelumnya," kata Byron Roe yang merupakan seorang pensiunan terhormat profesor di Bagian Fisika, dan penulis makalah tentang hasil tersebut yang baru dipublikasikan di Physical Review Letters.

"Penjelasan paling sederhana melibatkan penambahan partikel-partikel baru seperti neutrino, atau neutrino steril yang tidak memiliki interaksi normal lemah."

Ketiga tipe neutrino berinteraksi dengan materi utamanya melalui kekuatan nuklir lemah yang membuat mereka sulit dideteksi. Dihipotesikan bahwa aspek ke empat ini tak akan berinteraksi melalui kekuatan lemah tersebut yang membuatnya bahkan lebih sulit untuk ditemukan.

Keberadan neutrino steril bisa membantu menjelaskan komposisi alam semesta, kata William Louis yang merupakan seorang ilmuwan di Los Alamos National Laboratory yang dulunya merupakan mahasiswa doktoral di UM dan dilibatkan dalam eksperimen MiniBooNE.

"Para fisikawan dan astronom sedang mencari neutrino-neutrino steril karena mereka bisa menjelaskan sebagian atau bahkan keseluruhan materi gelap alam semesta," tutur Louis. "Neutrino steril mungkin juga bisa membantu menjelaskan asimetri materi alam semesta, atau mengapa alam semesta itu pada dasarnya terdiri dari materi daripada antimateri."

Eksperimen MiniBooNE yang merupakan suatu kolaborasi antara sekitar 60 peneliti dari berbagai institusi, diselenggarakan di Fermilab untuk mengecek hasil eksperimen Liquid Scintillator Neutrino Detector (LSND) di Los Alamos National Laboratory yang dimulai pada tahun 1990. LSND merupakan yang pertama mendeteksi lebih banyak osilasi neutrino daripada yang diprediksikan oleh model standar.

Hasil permulaan MiniBooNE beberapa tahun lalu yang didasarkan pada data dari sebuah sinar neutrino (sebagai kebalikan dari sinar antineutrino), tidak mendukung hasil LSND. Meskipun demikian, eksperimen LSND dilaksanakan menggunakan sebuah sinar antineutrino, jadi itu merupakan langkah selanjutnya bagi MiniBooNE.

Hasil baru ini didasarkan pada data tiga tahun pertama dari sebuah sinar antineutrino, dan menceritakan cerita lain daripada hasil-hasil sebelumnya. Data sinar antineutrino MiniBooNE memang mendukung penemuan LSND, dan fakta bahwa eksperimen MiniBooNE menghasilkan hasil berbeda bagi antineutrino daripada neutrino, secara khusus mengejutkan para fisikawan.

"Faktanya bahwa kami melihat efek ini pada antineutrino dan bukan pada neutrino membuatnya semakin aneh," ujar Roe. "Hasil ini berarti diperlukan bahkan lebih banyak tambahan serius pada model standar kami daripada yang telah dipikirkan dari hasil pertama LSND."

Hasil tersebut nampaknya melanggar "simetri paritas isi" alam semesta yang menyatakan bahwa hukum fisika berlaku dengan cara yang sama bagi partikel-partikel dan antipartikel penyeimbang mereka. Pelanggaran simetri ini telah terlihat pada beberapa penguraian yang jarang, tapi tidak dengan neutrino, kata Roe.

Walaupun hasil ini secara statistik signifikan dan memang mendukung penemuan LSND, para peneliti fisikawan mengingatkan bahwa mereka membutuhkan hasil pada periode yang lebih lama atau eksperimen tambahan sebelum mereka boleh mendiskualifikasi prediksi model standar.

Selasa, 10 Juni 2014

Pemanfaatan TIK dalam Pembelajaran Fisika

Pemanfaatan TIK dalam pembelajaran Fisika, selain bertumpu pada interaksi user dengan teknologi itu sendiri juga terkait langsung dengan proses pembelajaran sains (fisika). Sudah bukan rahasia lagi, fisika –dan matematika– dipandang sebagai mata pelajaran yang sulit  dan “menakutkan” bagi sebagian besar peserta didik. Sesungguhnya hal ini lebih kepada persoalan interaksi peserta didik dan guru dalam penyampaian materi, dan bukan ilmu fisika nya yang bermasalah. Fisika sama halnya ilmu-ilmu yang lain bersifat netral. Sebagian besar konsep fisika bersifat abstrak yang mungkin sangat sulit dipahami peserta didik. Keterbatasan alat-alat percobaan juga menjadi kendala, padahal dengan melakukan percobaan diharapkan siswa menjadi mudah memahami suatu konsep yang sulit. Untuk itu dalam penyajian pembelajaran di kelas guru fisika dituntut untuk dapat berkreasi dan menciptakan suasana kelas yang menyenangkan sehingga siswa tidak menjadi takut pada pelajaran fisika, bahkan dapat mengubah image pelajaran fisika itu sulit dan menakutkan, menjadi pelajaran yang disukai peserta didik. Bukan hal yang mudah bagi guru untuk membuat suasana kelas fisika menjadi kelas yang menyenangkan. Persoalannya adalah, mengupayakan agar konsep-konsep abstrak fisika ini dapat ditampilkan secara nyata sehingga peserta didik mendapatkan pengalaman baru dalam pembelajaran yang melekat di benak mereka.
Telah kita pahami bahwa kadangkala kegiatan belajar mengajar (KBM) seringkali dihadapkan pada materi yang abstrak dan di luar pengalaman siswa sehari-hari, sehingga materi ini menjadi sulit diajarkan guru dan sulit dipahami siswa. Visualisasi adalah salah satu cara yang dapat dilakukan untuk mengkonkritkan sesuatu yang abstrak. TIK akan dengan mudah memvisualisasikan dalam bentuk gambar bergerak (animasi) yang juga dapat ditambahkan suara. Sajian audio visual yang dikenal dengan multimedia ini akan menjadikan visualisasi menjadi lebih menarik.Kapan multimedia dapat efektif digunakan dalam pembelajaran? Untuk menjawabnya perlu memahami level-level multimedia yang menurut Mayer (2001), mempunyai tiga level yaitu: Level teknis, yaitu multimedia berkaitan dengan alat-alat teknis; alat-alat ini dapat diartikan sebagai wahana yang meliputi tanda-tanda (sign). Level semiotik, yaitu representasi hasil multimedia seperti teks, gambar, grafik, tabel, dll. Level sensorik, yaitu yang berkaitan dengan saluran sensorik yang berfungsi untuk menerima tanda (sign).
Dengan memanfaatkan ketiga level di atas diharapkan dapat mengoptimalkan multimedia dan mendapatkan efektivitas pemanfaatan multimedia dalam proses pembelajaran. Dalam membuat suatu multimedia pembelajaran, tidak harus seluruh media ditampilkan. Penggunaan media yang kurang tepat justru akan mengaburkan konten yang ingin disampaikan. Pemilihan jenis media yang digunakan tergantung pada konten materi yang disajikan, karena setiap media memiliki karakteristik masing-masing. Jenis multimedia dalam pembelajaran meliputi:
1. Multimedia Presentasi
Multimedia presentasi digunakan untuk menjelaskan materi-materi yang sifatnya teoritis, digunakan dalam pembelajaran klasikal dengan kelompok belajar yang cukup banyak. Media ini cukup efektif sebab menggunakan multimedia proyektor yang memiliki jangkauan pancar cukup besar. Kelebihan media ini adalah menggabungkan semua unsur media seperti teks, video, animasi, image, grafik dan sound menjadi satu kesatuan penyajian, sehingga mengakomodasi sesuai dengan modalitas belajar siswa. Program ini dapat mengakomodasi siswa yang memiliki tipe visual, auditor maupun kinestetik (Rusman, geocities.com).
2. Multimedia interaktif
Menurut Rusman (geocities.com) diperkuat Samsudin (2008), CD interaktif merupakan media yang bersifat interaktif dan multimedia karena terdapat unsur-unsur media secara lengkap meliputi sound, animasi, video, teks dan grafis. Beberapa model multimedia interaktif yaitu: (1) Model Drill: merupakan salah satu strategi pembelajaran yang bertujuan memberikan pengalaman belajar yang lebih konkrit melalui penciptaan tiruan-tiruan bentuk pengalaman yang mendekati suasana sebenarnya (biasanya dalam bentuk latihan soal-soal), (2) Model Tutorial: merupakan program pembelajaran dengan menggunakan perangkat lunak berupa program komputer yang berisi tujuan, materi pelajaran dan evaluasi, (3) Model Simulasi: pengajaran dengan komputer untuk simulasi pada suatu keadaan khusus, atau sistem di mana siswa dapat berinteraksi, (4) Model Games: model permainan ini dikembangkan berdasarkan atas ”pembelajaran yang menyenangkan”, dimana peserta didik akan dihadapkan pada beberapa petunjuk dan aturan permainan.
Adapun tujuan utama pemanfaatan TIK dalam sains (fisika) terbagi dalam empat cakupan wilayah yaitu: penanganan data, informasi, komunikasi, dan eksplorasi. Guna menunjang penggunaan TIK yang optimal perlu didukung perangkat lunak dan perangkat keras yang memadai. Kebutuhan akan peralatan pendukung dapat digolongkan menjadi 4 bagian yaitu: (1) peralatan pemasukan data dan video digital untuk menangkap data berupa gambar, (2) spreadsheets dan alat pembuat grafik untuk penanganan dan analisis data, (3) alat pemodelan dan simulasi termasuk animasi virtual, (4) sumber-sumber informasi seperti internet atau CD-ROMs.
Kegiatan pembelajaran fisika tidak terlepas dari penyampaian materi di kelas dan kegiatan praktek yang menunjang pembelajaran. Praktikum dimaksudkan untuk meningkatkan penguasaan materi dan keterampilan ilmiah melalui pengamatan langsung dan berbagai aktifitas laboratorium. Model implementasi pemanfaatan TIK dalam pembelajaran di kelas dan aktifitas di laboratorium sedikitnya dapat digolongkan menjadi 3 yaitu : (1) MBL/CBL (Microcomputer Based Laboratory/Calculator Based Laboratory), (2) VBL/VBD (Video Based Laboratory/Video Based Demonstration), (3) SBL/ISE (Simulation Based Laboratory/Interactive Screen Experiment). Pada Microcomputer Based Laboratory (MBL) adalah penggunaan komputer yang difokuskan pada proses pencacatan data eksperimental fisika secara otomatis. Dalam prosesnya pengambilan data menggunakan berbagai jenis sensor sehingga dapat melakukan pengukuran secara lengkap dan otomatis. Penggunaan komputer dalam Video Based Laboratory (VBL) difokuskan pada analisis fenomena/gejala fisika yang teramati pada rekaman video digital (sebelumnya menggunakan photographs atau stroboscopic photographs). Simulation Based Laboratory (SBL) merupakan kategori yang sudah cukup dikenal, yang penerapannya membuat gejala sains (fisika) melalui simulasi dengan komputer yang bertumpu pada model matematis. Kekuatan utama dalam SBL adalah kemampuannya memvariasi parameter-parameter eksperimen untuk memunculkan respon yang berbeda dari besaran-besaran fisika yang diamati.
Ada cara lain dalam memanfaatkan TIK, salah satunya dengan membuat multimedia sederhana selayaknya sebuah sajian film (cinematografi) untuk pembelajaran fisika. Untuk membuatnya perlu didukung kompetensi guru dalam menguasai TI. Penguasaan TI bagi guru adalah salah satu dampak dari kemajuan Teknologi Informasi pada dunia pendidikan. Sudah sepatutnya guru tidak boleh ketinggalan untuk selalu mengupdate kemampuan dalam TI, karena banyak manfaat yang didapat dari TI untuk dunia pendidikan. Salah satu manfaat tersebut adalah untuk membuat media pembelajaran berbasis TI yang dapat memvisualkan konsep fisika yang abstrak dan sulit dipahami, sehingga pelajaran Fisika menjadi mudah dipahami.
Membuat media pembelajaran fisika berbasis TI yang sederhana, hanya dibutuhkan kompetensi penguasaan power point untuk penyajian (minimal mampu menggunakan variasi background-teks-warna-grafik, variasi custom animation, menggabungkan file, hyperlink, navigasi, insert picture-audio-videoinsert file flash dan insert file applet) dan koneksi internet untuk browsing gambar/animasi/video yang disisipkan pada power point tersebut. Software pendukung yang digunakan adalah Java Applet, Shockwave Player, Macromedia Flash, Quick Time Player dan Macromedia Breeze. Selain itu dibutuhkan pula software pendukung yang biasanya digunakan dalam editing foto/video seperti Ulead Video Studio, 3D Album, Xilisoft Video Converter dan Camtasia. Dalam pembuatan media pembelajaran dituntut kreatifitas seorang guru agar media tersebut menarik untuk disajikan. Salah satu yang dapat lakukan adalah dengan membuat media yang disajikan layaknya sebuah sajian film yang menarik dan menghibur. Dalam hal ini guru bertindak sebagai sutradara sekaligus produser sebuah film. Melalui tayangan gambar maupun ilustrasi bergerak seperti multimedia buatan sendiri tersebut, diharapkan siswa terpacu belajar dan semakin menyenangi fisika. Selain itu, tentu saja agar materi tersampaikan secara efektif dan mudah dipahami, daripada sekedar menjejali peserta didik dengan rumus-rumus “bisu” di papan tulis.
Dewasa ini telah banyak beredar perangkat lunak pendukung pembelajaran fisika yang bisa dengan mudah diperoleh di internet, baik versi gratis maupun berbayar/membeli lisensi. Ada banyak sekali aplikasi pendukung pembelajaran fisika di dunia maya, tergantung kepada sejauh mana kita memanfaatkannya seoptimal mungkin. Tersedianya berbagai perangkat lunak ini dapat dipandang sebagai peluang sekaligus tantangan bagi para pelaku pendidikan di era penguasaan teknologi informasi seperti sekarang ini. Berdasarkan fungsi dan pemanfaatannya, perangkat lunak tersebut dapat dikategorikan menjadi (1) animasi fisika: MS Powerpoint, Macromedia flash, (2) Simulasi fisika: PhET, Interactive physics, (3) Analisis Video: OSP Tracker, Logger Pro, (4) pemodelan dan simulasi: MS Excel, Modellus/Easy Java Simulation (EJS), (5) Data logging: Vernier LabPro, LabQuest, (6) Analisis grafik dan data: MS Excel, OSPdatatools. Beberapa software lainnya yang menarik untuk dicoba: Audacity, Overtone, Scope, Microsoft Student dan Microsoft Encarta.
Contoh untuk membuat simulasi fisika tentang Gerak Lurus Berubah Beraturan (GLBB) kita bisa memanfaatkan aplikasi Modellus. Dengan sofware ini akan diperoleh simulasi visual dua dimensi berupa animasi informatif dilengkapi tabel dan grafik. Modellus mampu menampilkan beragam simulasi pembelajaran fisika dasar dari yang sederhana sampai yang cukup rumit. Untuk menampilkan simulasi, terlebih dahulu masukkan persamaan matematis pada menu mathematical model. Setelah itu tambahkan beberapa settingan agar simulasi bisa dijalankan. Peserta didik dapat berkreasi membuat percobaan visual sendiri untuk memahami konsep-konsep fisika yang dianggap abstrak. Bagi siswa kelas X SMA yang tidak memahami pokok bahasan kinematika atau Hukum Newton tentang gerak dengan hanya sepintas mendengarkan penjelasan guru di kelas, dengan “mengutak-atik” Modellus ini akan mendapatkan suatu pengalaman baru bagaimana memahami dan memvisualkan konsep-konsep abstrak tersebut dalam tataran yang lebih nyata.
Selain berbagai aplikasi yang sudah dikemukakan di atas, untuk membuat simulasi pembelajaran fisika kita bisa juga menggunakan PhET, software interaktif yang dibuat oleh University of Colorado at Boulder (Amerika Serikat). PhET merupakan aplikasi simulasi berbasis bahasa pemrograman Java. Interface PhET bisa dikatakan hampir mirip dengan Modellus dimana menonjolkan tampilan animasi dua dimensi dan grafik. Software ini dapat digunakan secara offline maupun online. Pada tabs menu, pengguna bisa leluasa memilih percobaan dari berbagai bidang ilmu seperti biologi, kimia, ilmu kebumian, dan fisika. Contoh percobaan fisika tentang interferensi gelombang cahaya dan suara terdapat pada sub menu cahaya dan radiasi. Pengguna dapat mendownload percobaan ini, atau menyaksikannya secara online. PhET menyediakan fasilitas search bagi para pengguna agar lebih mudah mencari percobaan yang diinginkan disamping ratusan juta simulasi percobaan ilmiah yang sudah terupload di database.
Software interaktif lainnya yang tidak kalah menarik adalah Microsoft Encarta. Software buatan raksasa operating system Microsoft Corporation, bertajuk Ensiklopedia yang merangkum berbagai topik yang sangat luas dari mulai sejarah, ekonomi, politik, budaya, ilmu sosial, matematika, komputer, sains, biologi, kimia, dan tentu saja fisika. Tidak seperti software simulasi yang kadangkala  membutuhkan input persamaan matematis atau data logging, Microsoft Encarta sangat mudah digunakan (easy usage), tidak memerlukan input apapun karena semua data sudah tersimpan dalam database program. Tampil dengan interface warna-warni (dapat kita temukan di Encarta Kids) menjadikannya atraktif dan cukup menggoda anak-anak khususnya siswa tingkat SD dan SMP untuk mencobanya. Pengguna cukup mengklik tabs menu yang tersedia  maka akan muncul informasi berupa teks, gambar, animasi, clips dan video pendek. Terdapat kuis trivia untuk sekedar merefresh pikiran sambil “menguji” seberapa baik pengusaan materi setelah puas mengaduk-aduk isi ensiklopedia ini. Microsoft Encarta semudah mengakses Google atau Wikipedia, bahkan pada beberapa hal memberikan informasi yang lebih terorganisasi dan terperinci. Pengguna juga dapat memanfaatkan fasilitas search yang terdapat pada sisi kanan atas layar. Ketikkan kata kunci pada menu search dan Microsoft Encarta akan menampilkan hasil pencarian.

Rabu, 04 Juni 2014

PERSAMAAN SCHRÖDINGER

       Persamaan Schrodinger diajukan pada tahun 1925 oleh fisikawan Erwin Schrodinger (1887-1961). Persamaan ini pada awalnya merupakan jawaban dari dualitas partikel-gelombang yang lahir dari gagasan de Broglie yang menggunakan persamaan kuantisasi cahaya Planck dan prinsip fotolistrik Einstein untuk melakukan kuantisasi pada orbit elektron. Selain Schrodinger dua orang fisikawan lainnya yang mengajukan teorinya masing-masing adalah Werner Heisenberg dengan Mekanika Matriks dan Paul Dirac dengan Aljabar Kuantum. Ketiga teori ini merupakan tiga teori kuantum lengkap yang berbeda dan dikerjakan terpisah namun ketiganya setara. Teori Schrodinger kemudian lebih sering digunakan karena rumusan matematisnya yang relatif lebih sederhana. Meskipun banyak mendapat kritikan persamaan Schrodinger telah diterima secara luas sebagai persamaan yang menjadi postulat dasar mekanika kuantum.
       Persamaan Schrodinger merupakan persamaan pokok dalam mekanika kuantum – seperti halnya hukum gerak kedua yang merupakan persamaan pokok dalam mekanika Newton – dan seperti persamaan fisika umumnya persamaan Schrodinger berbentuk persamaan diferensial. Bentuk umum persamaan Schrodinger adalah sebagai berikut,
dengan ? adalah fungsi Schrodinger yang mendefinisikan partikel yang bergerak dalam tiga dimensi dengan energi tertentu dan berada di bawah pengaruh medan potensial V tertentu. Bentuk khusus persamaan Schrodinger yaitu persamaan Schrodinger bebas waktu adalah
Bentuk ini lebih sering digunakan karena energi dan medan potensial sistem fisika umumnya hanya bergantung pada posisi.
Walaupun rumusan matematis persamaan Schrodinger lebih sederhana dibandingkan Mekanika Matriks dan Aljabar Kuantum, pemecahan persamaan ini tetap membutuhkan pengetahuan matematika lanjut. Langkah pertama yang dilakukan adalah menentukan energi kinetik dan potensial sistem dan mensubstitusikannya ke dalam persamaan di atas. Langkah kedua adalah merubah persamaan di atas kedalam sistem koordinat yang sesuai dengan sistem yang ditinjau. Untuk sistem atom hidrogen sistem koordinat yang sesuai adalah sistem koordinat bola. Langkah kedua adalah melakukan pemisahan variabel. Persamaan Schrodinger mengandung tiga koordinat ruang yang saling ortogonal dan harus dipisahkan menjadi 3 persamaan berbeda yang hanya mengandung satu koordinat ruang. Langkah ketiga adalah memecahkan ketiga persamaan tersebut secara simultan. Hasil yang diperoleh merupakan bilangan-bilangan kuantum yang memerikan struktur sistem berdasarkan tingka-tingkat energi yang menyusun sistem tersebut. Struktur sistem ini selanjutnya dipergunakan untuk meramalkan perilaku sistem dan interaksinya dengan sistem lain.
Penerapan persamaan Schrodinger pada sistem fisika memungkinkan kita mempelajari sistem tersebut dengan ketelitian yang tinggi. Penerapan ini telah memungkinkan perkembangan teknologi saat ini yang telah mencapai tingkatan nano. Penerapan ini juga sering melahirkan ramalan-ramalan baru yang selanjutnya diuji dengan eksperimen. Penemuan positron – yang merupakan anti materi dari elektron – adalah salah satu ramalan yang kemudian terbukti. Perkembangan teknologi dengan kecenderungan alat yang semakin kecil ukurannya pada gilirannya akan menempatkan persamaan Schrodinger sebagai persamaan sentral seperti halnya yang terjadi pada persamaan Newton selama ini.

Pustaka
Beiser, Arthur and The Houw Liong. 1990. Konsep Fisika Modern.
       Jakarta: Erlangga.
McEvoy, J.P. and Zarate, Oscar. 1996. Quantum Theory For Beginners.
       Bandung: Mizan.
Serway, Raymond A.; Moses, Clement J.; and Moyer, Curt A. 1989. Modern Physics.
       Florida: Harcourt Brace Jovanovich.